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This work combines three separate disciplines 
It is a bit heavy and requires several sittings. 

1) Understanding and modeling physical 
systems such as electronics or mechanical 
systems.    

2) Elementary Mathematical analysis and 
Fourier transforms. 

3) Some elements of probability and statistics.   

None of this is original, but I have assembled it in a way that 
should be useful for detector physicists. Some derivations 

are unusual to make them much more relatable. 



Outline

• In part 1 

• Some examples of linear systems.  

• Introduction to Fourier transforms and discrete Fourier transform.  

• Definitions regarding noise waveforms, and its Gaussian character. 

• Part 2

• White noise

• Gaussian noise and central limit theorem. 

• Relation to Brownian motion.  

• Classification of noise spectra. 



Take time interval  0 → T
Assume there are N elementary noise excitations in this time interval.
Each characterized by qi

e(t) = qiδ (t − ti )
i=1

N

∑
If each elementary excitation produces a response g(t) (with Fourier transform G(ω )) 
then the noise waveform is given by 

eg(t) = qig(t − ti )
i=1

N

∑
Fourier transform of this is given by 

EG(ω ) = qiG(ω )
i=1

N

∑ e− iωti

We have to examine this function as rate r  =  N /T →∞
Question:  What is the mean value of eg(t) and the variance of eg(t) ?
and what is the probability density function ? 

White noise 



Taking the average
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The average value of eg(t) is not an average over time 
(0 →  T ), but an average over great many intervals of length T 
with t held fixed. Imagine that g(t) is a pulse much shorter 
than T, and rate r =N/T constant.
Then let the number of intervals go to infinity. 

eg(t) = r q g(t)dt
−∞

∞

∫
This is the average value of the pulse multiplied by the rate. 

eg(t)2 − eg(t) 2 = r q2 g(t)2 dt
−∞

∞

∫
This proof takes a bit of work, ... 

This is called Campbell's theorem. In its most general form, the averages of powers 
of g(t) form the coefficients of expansion of the logarithm of the charateristic function.  
We leave this for you to investigate.  



ac(τ ) = eg(t) ⋅eg(t +τ
−∞

∞

∫ )dt    is the autocorrelation function for the noise.  

Convert to Fourier transform     EG(ω ) = Fourier[eg(t)]

ac(τ ) = 1
(2π )2

dt dω dω ' EG(ω ')eiω 'tEG(ω )
−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ eiωteiωτ

First integrate over t

ac(τ ) = 1
(2π )2

dω ' dω (2πδ (ω +ω '))EG(ω )EG(ω ')
−∞

∞

∫
−∞

∞

∫ eiωτ

Switch ω '→ -ω ,   recall that EG  is Hermitian EG(-ω ) = EG*(ω )

ac(τ ) = 1
2π

dω EG(ω ) 2 eiωτ
−∞

∞

∫
This is called the Weiner-Khinchin theorem.  It states that the autocorrelation is
the inverse Fourier transform of the power spectrum of the noise. 
Therefore  only the power spectrum is needed to specify the characteristics of
the noise. When τ=0, we end up with Parseval's theorem. 

eg(t)2

−∞

∞

∫ dt = 1
2π

dω EG(ω ) 2

−∞

∞

∫     We now need to figure this in terms of g(t) or G(ω )

Autocorrelation and the power spectrum

This is the simple version of this 



We now work on the previous result for white noise 
and relate it to the impulse response function of the system. 

ac(τ ) = 1
2π

dω EG(ω ) 2 eiωτ
−∞

∞

∫

ac(τ ) = 1
2π

dω qiqjG(ω )G*(ω )e− iω (ti−t j )eiωτ
j=1

N

∑
i=1

N

∑
−∞

∞

∫
as N →∞ and if all qi  have the same magnitude

ac(τ ) = 1
2π

dωG(ω )G*(ω ) i N i q 2

−∞

∞

∫ i eiωτ

If we set q = ±Q / N  where Q is the elementary noise charge then 

ac(τ ) = 1
2π

dω G(ω ) 2 iQ2

−∞

∞

∫ i eiωτ

This shows that the noise characteristics for white noise after a filter are only dependent on
the power spectrum of the filter. I have played a small trick to make this simple. 



And so we finally have 

eg(t)2 − eg(t) 2 = r ×Q2 g(t)2 dt =
−∞

∞

∫ r × Q
2

2π
G(ω ) 2 dω

−∞

∞

∫
This states that variance (RMS) of the noise depends on the filter
power spectrum.  The argument was done starting with white noise, but is general. 
The noise has a finite variance only if the integral converges. This  
depends on the nature of the filter function and its poles.  

What do we do if the noise at the input is not white ? 
a) Numerically, we can absorb the additional frequency dependence into G(ω )
b) Clearly the native input noise must also be limited in frequency domain and so 
additional terms may be needed in the mathematical model.  
c) The best might be to use an empirical model using measurements of the system.

We will examine this later .... 
 



Closer look at white noise

White noise has constant power at all frequencies since Fourier transform 
of delta functions is a constant. This means equal amount of fluctuation 
no matter how finely the time is divided or an infinite fluctuation at a single moment. 

e(t) = qiδ (t − ti )
i=1

N

∑ ⇒ Fourier transform ⇒ E(ω ) = qie
− iωti

i=1

N

∑

E(ω ) 2 = e− iω (ti−t j )qiqj
j
∑

i
∑   and ac(τ ) = 1

2π
dω E(ω ) 2 eiωτ

−∞

∞

∫
Take the average of the sum over all frequencies in the integral.  

ac(τ ) = 1
2π

e− iω (ti−t j )qiqj
j
∑

i
∑ eiωτ dω

−W

W

∫ ....  we let N, W→∞

oscillating terms in the sums will average to zero unless ti = t j  giving just the total N. 

ac(τ ) = dω Nq2

2π
eiωτ

−∞

∞

∫ ⇒  Flat noise power.  ac(0) (total power) is undefined. 

The total integrated power in white noise is undefined because there is fluctuation
at all time scales, no matter how finely you divide the time (or how high the frequency).  



Let Xi  be N independent random variables with probability densities PXi (xi )

Recall that the characteristic function is ϕXi
(ki ) = eikxiPXi (xi )dxi∫

z = f (xi ) is a real function of the random variables Xi

How do we calculate the PDF of Z ?  It is not simple for any f , but there are some simple relations
The expectation value  for the mean and square (if they exist). 

Z = f (x1,x2,..., xN )PX1
(x1)dx1PX2

(x2 )dx2...PXN (xN )dxN∫
Z 2 = ( f (x1,x2,..., xN ))2PX1

(x1)dx1PX2
(x2 )dx2...PXN (xN )dxN∫

Recall that the moments are defined in terms of derivatives of the characteristic function 

Therefore the characteristic function for Z is 

ϕZ (k) = eikf (x1,x2, ...,xN )PX1
(x1)dx1PX2

(x2 )dx2...PXN (xN )dxN∫
It may not be simple to invert this for any function f  to obtain the PDF for Z. 
We will now do this for a simple case. 

At this point it is useful to learn the central limit theorem 



Let all Xi  have the same PDF and z = f (xi ) =
1
N

xi∑ ; 

in other words, the random variable Z  is the average of random variables Xi

also assume that the expectation X = 0 for simplicity. And let N be very large.  

ϕZ (k) = e
i k
N

xi∑∫ PX1
(x1)dx1...PXN (xN )dxN

= (ϕX ( k
N

))N = 1+ x k
N

− x2 k2

2N 2 +O(k 4 )..
⎛
⎝⎜

⎞
⎠⎟

N

Recall e = lim
N→∞

(1+1/ N )N  and so finally. (with σ 2 = x2 )

ϕZ (k) ≈ e
−k2 σ 2

2N  

This is the characteristic function for a Gaussian distribution with variance of σ
2

N
. 

Recall from the earlier part of this lecture that the Gaussian PDF that corresponds to this
characteristic function is 

PZ (z) = N
σ 2π

e
−N iz

2

2σ 2  

The result is much more general than indicated in this calculation. The sum of a large 
number of independent random variables approaches the Gaussian distribution. This is true even
if the individual variables themselves are not Gaussian distributed. 

Notice the conditions: x2  must exist ! And the Gaussian limit is obtained as N →∞



white noise distribution after digitization
Let start with white noise over period T.  

e(t) = qiδ (t − ti )
i=1

N

∑ ⇒ Fourier transform ⇒ E(ω ) = qie
− iωti

i=1

N

∑

we will set qi = si
Q
N

..... E(ω ) =Q sie
− iωti

Ni
∑       here si = ±1

In the case of a discrete spectrum how do we end up with Gaussian distributed values ? 

Take time interval T with M bins of width Δ = T
M

 and ω l = l ⋅
2π
T

,  place N pulses in this time.

F(ω ) = 1
N

sie
− iωti

i=1

N

∑ ⇒ Fl =
1

Δ N
sie

− i2πlRi

i=1

N

∑  where Ri  is uniform random 0-1

This is a 2 dim random walk with Fl = xl + iyl . (Take F0 =
1
N

si = 0 for convenience.∑ )

Now we take a inverse DFT of Fl  (recall that sums over  sinusoidals of diff. freq. add to 0)

fk =
1
M

Fl
l=−(M−1)/2

(M−1)/2

∑ e
i2πl k

M = 1
M

2xl cos(2πlk /M )+ 2yl sin(2πlk /M )
l=1

(M−1)/2

∑
fk  is simply a  Gaussian variate with σ =1. The expectation value fk

2 = 1

Notice that we effectively cutoff the high frequencies by digitizing the waveform in 
frequency space. And so the resulting white noise waveform does not have infinite power.  

Prove this now. 



We examine this number somewhat more.  

lim
N→∞

1
N

ei2πti
i=1

N

∑ ≡ X + iY = R ⋅eiφ   where ti  is a uniform random (0,1]

This is a very famous random variate called the 2D random walk. 
(or 2D Brownian motion)
For large N the solution was given by Rayleigh (for step size of a) for
the magnitude R.

PN (R) =  2R
a2N

e
− R2

a2N → 2R ⋅e−R
2

   the φ  is uniform 0-2π

By making the step size a = 1
N

,  we get a simple distribution. 

The distribution for X and Y are simply normal Gaussian with σ =1/ 2.  

P(X) = 1
σ 2π

e
− X2

2σ 2

We will use the central limit theorem to prove this.  
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Homework:  can you imagine a simple way to generate a Gaussian variate ?



Historical interlude

Nature 72, 294; 318-342(1905) 

The problem of the random walk 
arises in many situations.

Brownian motion - Einstein (1905)

Stock markets - Original formulation 
by Louis Bachelier (1900)

It is the basis of the advanced 
financial mathematics that is 
currently taught in business 
schools. 



Now we apply the central limit theorem to the random walk function. 
We assume that the step size is real a > 0

aei2πti
i=1

N

∑ = a Cos(2πti )+ iSin
i=1

N

∑ (2πti ) ≡ X + iY

Here ti  are the random variables with support [0,1]. To find the 
distribution of X, and Y it is not necesssary to find the PDF for  Cos(2π ti ) and Sin(2π ti ).

It is only necessary to find  X  and X 2  and calculate the Gaussian variance. 

X = a Cos(2πti )
i=1

N

∑ = 0 = Y

X 2 = a2 Cos2 (2πti )
i=1

N

∑ = N a2

2
= Y 2

Both X, and Y are Gaussian distributed with variance of σ 2 = Na2

2
 by the CLT. 

Notice that as N →∞,  the mean remains zero, but because the variance blows up and the

walker wanders away to infinity only as σ ~ N  as we expected.  To be explicit, the joint PDF

P(x)P(y) =  1
2π Na2 / 2( ) e

− x2 1
Na2 e

− y2 1
Na2 = 1

2π Na2 / 2( ) e
−(x2+y2 ) 1

Na2

P(r,θ ) = P(x, y) ⋅ ∂(x, y)
∂(r,θ )

= 1
2π Na2 / 2( ) e

−(r2 ) 1
Na2 ⋅r  ......   Change of variables to polar coords

P(r) = 2r
Na2 e

− r2

Na2  ......  after integrating over θ :[0 − 2π ].....This is the derivation of the Rayleigh distribution.



an overview of previous stuff
The chain of logic here is as follows

White noise is formed from an infinite number of elementary excitations, 
each one of infinitsimal scale. They are a Poisson process with the rate going to infinity. 
When we digitize white noise over a finite time width, we cutoff high and low frequencies
and end up with equal power in each frequency band.  The probability density of 
the amplitude at each frequency is given by a random walk. This results in a Gaussian
distribution for the time domain waveform.

Above logic does not apply perfectly to the real world because then we could not 
distinguish bird chirping and water droplets falling.  
1) The noise only approaches Gaussian limit for infinite rate. 
2) The assumption of stationarity does not hold perfectly.  There can be many vibration
modes that damp at different rates leading to interesting effects. 
i.e.Stuff does not sound the same forward and backwards.  
3) Elementary noise is not white.   



Start with white noise in time T with N elementary pulses at random times ti

e(t) = qiδ (t − ti )
i=1

N

∑   and take Fourier transform 

E(ω ) = qie
− iωti

i=1

N

∑
Now apply the shaping filter in Fourier space. We can include non-white effects in this also.  

EG(ω ) = qie
− iωtiG(ω )

i=1

N

∑

Now we discretize ω .   ω l = l i
2π
T

 where l = −(M −1) / 2,...,(M −1) / 2  

T = M i Δ,..... I am assuming that M is odd here for symmetry.  

Care is needed to change units when made discrete.  Gl = G(ω l ) ⋅
1
Δ

which has a phase...

EGl = qi e
− i(2π /T )⋅l⋅RaniTG(ω l ) ⋅

1
Δ
= qi e

− i2π ⋅l⋅RaniGl
i=1

N

∑
i=1

N

∑
Rani  is an array of random from 0 to 1.  Must take care with the 2πl
Notice l = -(M −1) / 2,... (M −1) / 2 making the formula manifestly EG− l = EGl

*

Therefore the resulting inverse transform from inverse DFT will be real. 

How do we think about noise with some arbitrary 
(but finite) noise power as a function of frequency ?



Procedure for generating noise from a known spectral power
Choose the time interval.  T  in sec
Number of samples including 0.  M = 1001
Sampling time Δ sec. Index k = 0,  ... M -1
Frequency index l = -(M -1) / 2,...(M -1) / 2

Fundamental frequency δω =ω 0 =
2π
T

Generate two X, Y variates using Normal distribution with σ =1/ 2
From the known power spectrum select power for frequency ω = l ⋅ω 0

Set Gl = G(ω l ) / Δ   ... Check units.  

Set simulated Fourier transform EGl =Q ⋅Gl ⋅(X + iY ) = EG− l
*

Simulated noise waveform at each time k  is given by where Q is the normalization.

NFk =
1
M

EGle
i2πlk /M

l=−(M−1)/2

(M−1)/2

∑   where k = -(M -1) / 2,...(M -1) / 2

As shown above in the limit of large N (elementary pulses) the phase of Gl  does not matter
It is possible to replace Gl  with Abs[Gl ]
This will symmetrize the noise pulse as the phase → 0 
Recall that the inverse Fourier transform of a real function is symmetric around 0. 

The spectral power remains the same even if the phase is dropped. 



The general solution

The derivation provided above was deliberately made for digitized data to explicitly demostrate 
Gaussianity and also provide application method for many situations.  

The more general solution is obtained from the following formula.  The probability of 
the noise V (say it is a voltage) is given by. 

P(V ) = 1
2π

e− iVu e
r (eiug ( t )−1)dt
−∞

∞

∫
du

−∞

∞

∫            where r = rate

Notice that this is an inverse of the characteristic function in red.  
If the inner integrand is expanded then it is easy to see how one gets an Gaussian with 

variance of g(t)2 − g(t) 2 .

Rice provides a method for generalizing this to include the possibility that the noise
pulses are distributed according to some arbitrary law (exponential for example). 
Also look at "Algebra of Random Variables" by M.D. Springer.  



The issue of convergence.
There is a vast literature on this subject

Noise type Pulse Model Power 
spectrum Divergence Practical 

devices

White train of δ(t) ~1
Total noise 
diverges at 

infinite frequency

High frequency 
cutoff

Brownian 
motion

Integral of 
train of δ(t) ~1/f2

Total noise power 
diverges at 0 

frequency

Low frequency 
cutoff

Flicker or 1/f
Train of pulses 

that have a     
1/√(t-t0) fall

~1/f
Total noise 

diverge at both 0 
and infinity

Both high and 
low cutoff

These infinities do not happen because practical devices (including 
analysis processing) have cutoffs at low and high frequencies. These 

cutoffs need to be understood to evaluate the result.
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eventually this looks the same forward or backwards in time. It is not 
possible to figure our the direction of time from a snippet of data. 

Integration of white noise is Brownian noise



closer look at Brownian motion noise
Part of the system noise could be due to integration of white noise. 
What is the spectral power of such noise ?  

Recall  Fourier[ f (x)
−∞

t

∫ dx]= 1
2π

(F(ω )
iω

+πF(0)δ (ω ))

Start with white noise e(t) = 1
N

siδ (t − ti ) si = ±1  and ti  are random
i=1

N

∑ .

Fourier transform of the integral of e(t) is 

E(ω ) = 1
2πN

si (
e− iωti

iωi=1

N

∑ +πδ (ω )) ...second term is the dc component

E(ω ) ⋅E*(ω ) = 1
2πN

N
ω 2 +π

2 sis jδ
2 (ω )∑⎡

⎣⎢
⎤
⎦⎥

 second term zero for no dc component

This converges at high ω , but diverges at zero. 
If there is an additional shaping filter G(ω ) then  the spectral power is given by

Sbrownian (ω )= 1
2π

G(ω ) ⋅G*(ω )
ω 2

⎡

⎣
⎢

⎤

⎦
⎥

To make sure this converges there must be a filter that cancels out the denominator.
Or in another words differentiates the waveform.  



High pass,  differentiator

Vo(t)+Q /C =Vi (t)
dVo(t)
dt

+ I /C = dVi (t)
dt

Use Fourier Transforms to solve 
F V (t)[ ]=V (ω ), F[V '(t)]= iωV (ω )
iωVo(ω )+Vo(ω ) / RC = iωVi (ω )

Vo(ω ) =Vi (ω )×
iω

iω +1/τ

Vo
Vi

2

= ω 2

(ω 2 +1/τ 2 )

23

With the application of a high pass filter with time constant τ
the Brownian noise can be relaxed so that it does not diverge 
at low frequency.  

Sbrownian−relaxed (ω )= G(ω ) 2

ω 2 × ω 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

Sbrownian−relaxed (ω )= G(ω ) 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

If G(ω )=1 then the filter simply is flat for ω<<1/τ  
and falls as 1/ω 2  for ω>>1/τ  
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Large capacitors charge up 
spontaneously and need to have a 
discharging resistor even while being 
stored. 



Brownian noise after application of 
high pass filter
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Origin of flicker noise
There does not seem to be an obvious mechanism that produces noise 
with spectrum that varies as ~1/ω .  
If the elementary pulses go through an exponential filter (τ=RC) then

EG(ω ) = qie
− iωtiG(ω )

i=1

N

∑ = qie
− iωti × 1

1+ iωτi=1

N

∑

Power spectrum  S(ω ) =Q2 1
1+ (ωτ )2  falls as ~1/ω 2
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What if the time constant itself is uniform randomly changing between
1/τ1  to 1/τ 2  then the spectrum has to be averaged over this 

S(ω )= 1
1/τ1 −1/τ 2

Q2 1
1+ (ω / λ)2 dλ

1/τ 2

1/τ1

∫
The solution to this has a region where 

S(ω ) ≈ π
2(1 /τ1 −1/τ 2 )

× 1
ω

  when 1/τ 2 <ω <1/τ1

We can do this by Monte Carlo. 
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Flicker noise. What kind of pulse in time domain ?
White noise has a flat frequency spectrum  Sw (ω )∝1

Brownian motion noise is the integral of white and SB(ω )∝ 1
ω 2

What kind of noise has a power law SF ∝
1

ω 1+α  with α <1 ?

Construct Fourier transform of (1/ω ) noise:   FF (ω ) = 1
N

e− iωti × 1
ωi=1

N

∑
(In mathematics this represents a fractional integral in time domain.)  
Perform Inverse Fourier of FF (ω ). Just take one pulse at t0

fF (t) = 1
2π

1
ω−∞

∞

∫ e− iωt0eiωtdω

= 1
2π

1
ω−∞

0

∫ e− iωt0eiωtdω + 1
ω0

∞

∫ e− iωt0eiωtdω
⎡

⎣
⎢

⎤

⎦
⎥

= 1
2π

1
−ω0

∞

∫ e+ iω (t0−t )dω + 1
ω0

∞

∫ e+ iω (t−t0 )dω
⎡

⎣
⎢

⎤

⎦
⎥

This integral has a branch cut because of the ω . The answer is 

fF (t) =

2 / t − t0 t > t0 = J+
0 t ≤ t0
0 t ≥ t0

2 / t0 − t t < t0 = J−

 A linear combination of J+ , J−

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

(advanced and retarded) 
This is why this noise is 
not time reversible. 
In retarded case, the noise 
dies off as 1/t0.5 after a pulse 
giving very long time correlations.

This is a crazy integral 



Examples of 1/f spectra
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Measurement of light pulses 
from a PMT by Aiwu Zhang

This noise is deeply related to the 
structure of the device and therefore could 
be sensitive to it failure modes. 



High pass,  differentiator
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With the application of a high pass filter with time constant τ
the 1/f noise can be relaxed so that it does not diverge 
at low frequency.  

SFlick (ω )= 1
2π

G(ω ) 2

ω
× ω 2

(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

SFlick (ω )= 1
2π

G(ω ) 2 ×ω
(ω 2 +1/τ 2 )
⎡

⎣
⎢

⎤

⎦
⎥

If G(ω )=1 then the filter gives 0 for DC and rises for ω<<1/τ  
and falls as 1/ω  for ω>>1/τ  

Notice that the power is zero for at f=0 regardless of the 
value of the time constant. 
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simulated as described below
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Finish part 2.  

• We derived the Gaussian nature of most noises by 
using the Central Limit Theorem.  

• In general, there is a class of “stable” PDFs that 
result from the CLT.  (e.g. Landau PDF )

• We used the tool of elementary excitations and the 
delta function, but the results are more general.  

• The tools of using delta functions actually can be 
easily extended to perform Monte Carlo 
calculations. 

• Classification of noise spectra and their origin.  


